Stat 422/722: Recitation 1

Justin Khim

September 5th, 2017

1 Installation

For this course, you will need to install R and the package dplyr. We also suggest using the
IDE (integrated developing environment) RStudio. I'll try to use RStudio to make all of our
lives simpler, particularly with regard to scripts and the working directory.

1.1 Installing R

You can download R at the following website: https://cran.r-project.org/ Follow the
instructions for your computer to install R. This should give you a program for R on your
computer, which you could use for this course. It also installs the language R, which can
subsequently be used by RStudio.

1.2 Installing RStudio

You can download the (free version) of RStudio at https://www.rstudio.com/products/
rstudio/download/#download Again, follow the instructions.

1.3 Installing Packages in R

Now, open RStudio. You should have a number of available panes of information. Go to the
one called the “Console”. This is where we run our R code. To install dplyr, we use the
function install.packages. The whole command is

install.packages('dplyr')

Alternatively, one could install the whole tidyverse, which is a collection of packages
containing dplyr. RStudio may ask you for a mirror from which to download dplyr. I
suggest picking one that is geographically close to your current location.

Note that for our current session, we haven’t loaded dplyr into the console. All we have
done is install it on our computer. To load it, use the command

library(dplyr)

Then, dplyr commands are available for our current session. If you close RStudio, then
you should use the command again upon reopening.

We may use additional packages in the future. If we do, just follow these instructions
and replace any instance of ‘dplyr’ with the package in question.

2 Basics of R

Now that we've got R installed, we’ll want to play around with it a bit. First, we’ll think
about some basic “data” types. Here, “data” refers to the computer-science version of data,
which you can think of as variables. Next, we’ll talk about how to make our results easily
reproducible via scripts.

2.1 R as a Calculator

The data we’re interested in analyzing probably contains numbers in some form. Let’s see
some basic number things then:

2 + 2

[1] 4
2 /2

[1] 1
3.5 % 4
[1] 14
3°2

[1] 9

Note that for each of these, the text after #+# signififes the output for writing the pre-
ceding line in the console and then hitting enter.

You may notice a [1] right before the answer, and this stands for the index. In general,
R thinks of numbers as vectors of numbers, and it just so happens that the length of these
vectors is 1. Hence, the [1] helpfully tells us that our answer is the first index.

We can define vectors ourselves.

c(2, 2) + c(3, 4)

[1] 5 6

c(l, 5) - c(2, 6)

[1] -1 -1

1 :5

[1] 1 2345
rep(1, 5)

[1] 11111
rep(c(0, 1), 4)

[11 01010101
1:50

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
[24] 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
[47] 47 48 49 50

If we want to concatenate numbers into a vector, we use c. If we want an interval, we
can use the colon. If we want to repeat a vector a certain number of times, then we can
use the rep function. Finally, observe that when the output is too long to fit on one line, R
helpfully puts the index of each line in brackets, as with [1].

This is nice, but to begin to get to the level of functionality of a TI-83 or TI-84 Plus
calculator, we also need to be able to store variables. We can do that with either the equals
sign or with an arrow.

x =c(1, 2)
X

[1] 1 2

y <-1:3
y

[11 1 2 3
Now, observe that we can do some arithmetic or concatenate vectors themselves.
x + c(4, b5)

[11 5 7

clx, y)
[1] 1 21 2 3

One last interesting thing that we’ll note is that scalars (and more generally, smaller
vectors) get reused in order to make lengths match (if possible). For example, here we add 1
to x. Mathematically, this doesn’t really make sense because x is a vector with 2 entries.

x + 1
[1] 2 3

Here, R just adds 1 to each element of the vector. This can be nice for, say, standardizing
a vector. However, it’s one of the many ways in which R will try to do something that
doesn’t exactly make sense, which sometimes gives you weird and wrong answers. If that
was unclear, the basic idea is that R may not give you an error, but that doesn’t mean the
code is doing what you think it should do.

Well, that was enough fun with numbers for the day. How about we think about non-
numeric “data”? The next obvious thing is words or, to be more precise, strings. We see
that we can define strings using quotes.

"Hello, world!"

[1] "Hello, world!"

Now, let’s put some strings together.

x = "Hi, my name is "

name = "Justin"

7= n n

paste(x, name, z, sep = "")

[1] "Hi, my name is Justin."
paste(x, name, z, sep = " D))

[1] "Hi, my name is Justin !

Note that the argument sep just controls what goes between strings. Easy enough, right?
If you're wondering why strings are important, think about them being used to label data.
For instance, if we have a table of medical records, we might label the rows with patient
names and the columns with things like height, weight, marital status, etc.

Finally, we should at least mention Boolean data, ie TRUE or FALSE data.

x =5
x > 1
[1] TRUE
X==

[1] FALSE
x I=3
[1] TRUE

In the first line, we're assigning x, and in the subsequent lines, we’re doing comparisons.
We also have an operator for AND and an operator for OR.

4 <x &x<T7
[1] TRUE

X == | x == -2
[1] TRUE

We’ll go over these again as necessary, but you should know these exist. Note that vectors
can only contain one type of “data”.

2.2 Scripts

Now, we need to talk about saving our code so we can run it over again to reproduce our
results. Alternatively, we may need to make minor tweaks, and we wouldn’t want to have
to type everything into the console again. This is where scripts come in. You can open one
by going to “File”, “New File”, and then “R Script” on a Mac. There should be something
similar on Windows computers that essentially gives you a new pane with a blank file. Here,
you can type in lines of code, except if you hit enter, you just go to a new line, like in Word
or Notepad. Suppose we write the following lines in the script.

x = c(1, 2)
y = 1000 * x
X +y

How do we get this to the console? One way is by copying and pasting, but this is tedious.
If you hit command and enter on a Mac or control and R (for “run”) on a PC, then whatever
line your cursor is on is sent to the console. Finally, if you hit the “Source” button on the
upper-right side of the script pane, then the entire file runs, line by line. So, things have to
be in the correct order to get the output you want.

You should always use scripts when working in R. The top line or two of your script is
also a good place to load in dplyr.

There’s one last thing to note, particularly if you are looking at code that you did not
write. A # on a line of code, that signals the start of a comment. A comment isn’t evaluated
by the console; so they’re often used to write something to someone who is actually reading
the code. Here’s an example.

x =5
X

It’s good coding practice (or “coding style”) for you to write comments. This is helpful
for your instructors if you need help. Additionally, if you wait six months without using a
file, you’ll probably forget what the file was meant to do, the variable names, etc. Thus, you
should comment your code for your future self.

In general, good coding style is supposed to make everyone’s life easier. It’s especially

important if you're ever going to code as a part of a team. If you want to look at a style

guide, then I suggest the Google R style guide, which can be found at https://google.
github.io/styleguide/Rguide.xml

3 Data

Now, we come to the most important part of using R: data! We need to talk about how data
is stored in R. So, we’ll start with small examples where we input the data ourselves, just to
get used to data frames. Then, we’ll talk about how to load data from files. For the latter
task, we’ll use the King County house data file from class.

3.1 Data Frames

A data frame is R’s version of a table or spreadsheet. Rows contain instances, and columns
contain attributes. Here’s a basic example. Let’s consider a data frame consisting of three
people: Alice, Bob, and Eve. The data frame will contain names, gender, height, and weight.
First, we create vectors for each attribute.

nms = c("Alice", "Bob", "Eve")
gender = C (IIFII s IIMH s IIFII)
height = c(65, 70, 64)

weight = c(120, 170, 115)

Note that we cannot create vectors for each person because the attributes have different
types. Now, let’s create our data frame.

df = data.frame(nms, gender, height, weight)
df

#i# nms gender height weight

1 Alice F 65 120
2 Bob M 70 170
3 Eve F 64 115

We can see that we are given a table of the data as output. This is what we would expect.
Note that the column names are the given vector names.

3.2 The Working Directory

Now, we need to talk about the working directory. If I want you to load a file of data into R,
how would you go about doing it? It is not an Excel spreadsheet that you can simply open
from Finder or Explorer. You have to load it in the console in R yourself. Let’s consider the
King County file.

kc.df = read.csv("kc_house_data.csv'")

If you try this, you’ll probably get an error saying that this directory contains no such
file. What this means is that console can’t find the file. The reason it can’t find the file is
that, much like using a Finder or Explorer window, it is only looking in one folder at a time.
This is called the working directory.

How can you change the working directory? There’s a command to do it from the
console, setwd. It requires typing the path, slashes and all, to the folder that you want to
go. Alternatively, we can have RStudio help us out. Note that there is a pane, usually in
the bottom right, that has lots of tabs. The tabs are “Files”, “Plots”, “Packages”, “Help”,
and “Viewer”, at least for me. Click on “Files”. This shows you the files in your working
directory. Now, on the right side there is an elipses button “...”. Click this, and it will
allow you to change open a new folder instead. Change this to the folder that you would
like to use, presumably the one containing the data. Then, there’s a button to the left with
a blue gear and “More” written. Click this, to give the option to set the current folder as
the working directory, and hit this as well. There, you've (hopefully) changed your working
directory! You generally know it worked because it generates and runs the necessary setwd
command.

3.3 Reading Data

At this point, we can load the data. We’ll use the head function to look at the head of the
data frame, which is just the first few rows.

kc.df = read.csv("kc_house_data.csv")
head(kc.df)

#i# id year month day price bedrooms bathrooms sqft_living
1 7129300520 2014 10 13 221900 3 1.00 1180
2 6414100192 2014 129 538000 3 2.25 2570

3 5631500400 2015 2 25 180000 2 1.00 770

4 2487200875 2014 12 9 604000 4 3.00 1960

5 1954400510 2015 2 18 510000 3 2.00 1680

6 7237550310 2014 5 12 1230000 4 4.50 5420

sqft_lot floors waterfront view condition grade sqft_above sqft_basement
1 5650 1 0 0 3 7 1180 0
2 7242 2 0 0 3 7 2170 400
3 10000 1 0 0 3 6 770 0
4 5000 1 0 0 5 7 1050 910
5 8080 1 0 0 3 8 1680 0
6 101930 1 0 0 3 11 3890 1530
yr_built yr_renovated zipcode lat long

1 1955 0 98178 47.5112 -122.257

2 1951 1991 98125 47.7210 -122.319

3 1933 0 98028 47.7379 -122.233

4 1965 0 98136 47.5208 -122.393

5 1987 0 98074 47.6168 -122.045

6 2001 0 98053 47.6561 -122.005

Since there are a lot of columns and the columns have long entries or names, there’s still
a lot of output. Anyways, this gives us a sense of what the data looks like, at least as far as
manipulating it in R. Speaking of data manipulation, that’s the next section. Hopefully you
loaded the data, otherwise the next section will be hard to follow.

4 Data Manipulation

4.1 Basic Commands

Let’s start by looking at our old example data frame of Alice, Bob, and Eve. What are some
basic things we might want to do? For one, we might want to get columns, elements, or rows
back from the table. From the data table, one can access the vector of the column in three
ways. Here, we’ll illustrate this for the names.

df [, 1]

[1] Alice Bob Eve
Levels: Alice Bob Eve

df [, "nms"]

[1] Alice Bob Eve
Levels: Alice Bob Eve

df$nms

[1] Alice Bob Eve
Levels: Alice Bob Eve

The first way is to use a bracket and row-column indexing. Leaving the row index blank
gives all the rows, and then we're interested in the first column. The second way is to refer
to the column directly by its name. This is useful in large data frames where you may not
know the exact index or don’t want to count it. The final way is just “syntactic sugar”. By
using the dollar sign and then the column name, we can more easily access the column.

If we wanted just the first name in the names column, we can just use our row-column
index:

df [1, 1]

[1] Alice
Levels: Alice Bob Eve

df[1, "nms"]

[1] Alice
Levels: Alice Bob Eve

This provides two ways of obtaining the first name.
Now, what if I want to do fancier manipulations? Suppose I only want the names of the
females. Then, I could write code like this:

df [which(df[, "gender"] == "F"), "nms"]

[1] Alice Eve
Levels: Alice Bob Eve

We’ve essentially covered all the code necessary to understand this with the exception
of the which function. The problem is that this is somewhat complicated, and somehow we
had to call the data frame df twice even though we only care about really looking at it once.
Making this manipulation easier is why we’re using dplyr.

Getting rows is essentially the same as getting columns.

df (1,]
#it nms gender height weight
1 Alice F 65 120

However, note that the output is a data frame, not a vector. This can be useful for
getting a subset of the data to work with.

4.2 Using dplyr

Now, we need to learn the basic dplyr commands. I've collected all of them in the next
subsection if you just need a reference. But, simply continue reading this for a walkthrough.
For starters, we need to load dplyr.

library(dplyr)

##

Attaching package: ’dplyr’

The following objects are masked from ’package:stats’:
##

filter, lag

The following objects are masked from ’package:base’:
##

intersect, setdiff, setequal, union

The first command we’ll use is select. We'll first use this to select a few columns of
our data to look at, since all the columns just clutter the console. Let’s select the id, year,
month, day, price, bedroom, and bathrooms.

kc.small = select(kc.df,

id,

year,

month,

day,

price,

bedrooms,

bathrooms)
head(kc.small)
#i# id year month day price bedrooms bathrooms
1 7129300520 2014 10 13 221900 3 1.00
2 6414100192 2014 12 9 538000 3 2.25
3 5631500400 2015 2 25 180000 2 1.00
4 2487200875 2014 12 9 604000 4 3.00
5 1954400510 2015 2 18 510000 3 2.00
6 7237550310 2014 5 12 1230000 4 4.50

One new thing to note is that I can break the command input over multiple lines to make
it easier to read. Generally, all of the arguments to the function should line up. The next
thing to note is that we did indeed get rid of many of the columns, and now we have a new
data frame to work with.

There is an alternative syntax we could have used. We could have written

kc.small.2 = kc.df %>% select(id,
year,
month,
day,
price,
bedrooms,

10

bathrooms)
head(kc.small.?2)

#i# id year month day price bedrooms bathrooms
1 7129300520 2014 10 13 221900 3 1.00
2 6414100192 2014 129 538000 3 2.25
3 5631500400 2015 2 25 180000 2 1.00
4 2487200875 2014 129 604000 4 3.00
5 1954400510 2015 2 18 510000 3 2.00
6 7237550310 2014 5 12 1230000 4 4.50

Here, kc.small and kc.small.2 have the same data, but we used the select command
differently to get kc.small.2. Also, we had to use the command %>%, which is called the
pipe operator. It feeds the output of one function into another, or rather, it pipes it along.
This seems to be the standard for dplyr, so I'll suggest using it. It becomes useful when
you want to perform multiple operations on data, and it becomes easier to read than using
functions in the usual way.

Now, let’s suppose that we’re interested in sales in which there were at least two bedrooms
and two bathrooms. So, we can define a new data frame using the filter function.

kc.filtered = kc.small %>% filter(bedrooms >= 2, bathrooms >= 2)
head(kc.filtered)

#i# id year month day price bedrooms bathrooms
1 6414100192 2014 12 9 538000 3 2.25
2 2487200875 2014 12 9 604000 4 3.00
3 1954400510 2015 2 18 510000 3 2.00
4 7237550310 2014 5 12 1230000 4 4.50
5 1321400060 2014 6 27 257500 3 2.25
6 3793500160 2015 3 12 323000 3 2.50

And we see that we did indeed filter the data. Note that the commands in filter must
correspond to the column names as they are given in the data frame. Otherwise, R won’t
know what to do with them.

Next, suppose we want to rearrange the rows of the data frame by increasing price. We
can use the arrange function for this.

kc.arranged = kc.filtered %> arrange(price)
head (kc.arranged)

#i# id year month day price bedrooms bathrooms
1 7129304540 2014 12 20 133000 5 2.0
2 1823049182 2014 9 15 147400 3 2.0
3 2976800749 2014 10 31 150000 4 2.0
4 818500490 2014 10 9 153503 2 2.5

11

5 3356403304 2014 10 16 154000 S 3.0
6 7697870600 2014 9 9 158000 3 2.5

Thus, by specifying the column price, we arranged the data frame in increasing order of
price. We could have also done this in decreasing order of price using the descend command,
desc.

kc.descending = kc.filtered %>} arrange(desc(price))
head (kc.descending)

#i# id year month day price bedrooms bathrooms
1 6762700020 2014 10 13 7700000 6 8.00
2 9808700762 2014 6 11 7060000 5 4.50
3 9208900037 2014 9 19 6890000 6 7.75
4 2470100110 2014 8 4 5570000 5 5.75
5 8907500070 2015 4 13 5350000 5 5.00
6 7558700030 2015 4 13 5300000 6 6.00

Now, houses with different numbers of bedrooms really are different in the number of
people they can comfortably house. So, let’s group the data by number of bedrooms using
the group_by command.

kc.grouped = kc.arranged %>% group_by(bedrooms)
head (kc.grouped)

A tibble: 6 x 7

Groups: bedrooms [4]

#Hit id year month day price bedrooms bathrooms
<dbl> <int> <int> <int> <dbl> <int> <dbl>
1 7129304540 2014 12 20 133000 5 2.0
2 1823049182 2014 9 15 147400 3 2.0
3 2976800749 2014 10 31 150000 4 2.0
4 818500490 2014 10 9 153503 2 2.5
5 3356403304 2014 10 16 154000 3 3.0
6 7697870600 2014 9 9 158000 3 2.5

This gives us something that looks a little bit different. Nothing appears to be grouped,
but this is finally where we can do some descriptive statistics. Using the summarize com-
mand, we can compute summary statistics for each group.

analysis = kc.grouped %>/ summarize(avg_price = mean(price),
sd_price = sd(price),
avg_bathrooms = mean(bathrooms))

head(analysis)

12

A tibble: 6 x 4
bedrooms avg_price sd_price avg_bathrooms

#i# <int> <dbl> <dbl> <dbl>
1 2 508522.1 251898.9 2.292321
2 3 531518.8 300043.1 2.445915
3 4 677504.9 408914.9 2.652078
4 5 836451.3 622784.5 2.978924
5 6 862650.6 833533.0 3.243852
6 7 999400.5 751675.4 3.850000

Thus, at a glance, we can see on average what the price of a house is by the number
of bedrooms. Additionally, we can tell about how many bathrooms a house has given the
number of bedrooms. Neat.

Earlier, I said pipe notation can be useful. Well, we could have done everything in one
step.

analysis.2 = kc.df %>%
select(id,
year,
month,
day,
price,
bedrooms,
bathrooms) %>%
filter(bedrooms >= 2, bathrooms >= 2) %>%
arrange(price) %>%
group_by (bedrooms) %>%
summarize (avg_price = mean(price),
sd_price = sd(price),
avg_bathrooms = mean(bathrooms))
head(analysis.2)

A tibble: 6 x 4
bedrooms avg_price sd_price avg_bathrooms

#i# <int> <dbl> <dbl> <dbl>
1 2 508522.1 251898.9 2.292321
2 3 531518.8 300043.1 2.445915
3 4 677504.9 408914.9 2.652078
4 5 836451.3 622784.5 2.978924
5 6 862650.6 833533.0 3.243852
6 7 999400.5 751675.4 3.850000

This gives us the same output we got earlier. Additionally, this is much easier than
nested functions.

13

4.3 Important dplyr Commands

As a summary, here are the functions that we used.

select ()
filter()
arrange ()
mutate ()
group_by ()
summarize ()

If you ever need help with a function, using Google or using the help function of R is a
good idea. To get the documentation for a function, use a question mark, eg ?select.

5 Basic Visualization

We also need to do some basic visualization. Here, I'll show you bar charts, box plots,
histograms, and scatter plots.

5.1 Bar Charts

Let’s make a barplot of the number of houses sold by year. We’ll use the kc.arranged data
frame.

year.data = kc.arranged %>%
group_by (year) %>%
summarize(sales = length(id))
year.data

A tibble: 2 x 2
year sales
<int> <int>
1 2014 9017
2 2015 4140

year = year.data$year
sales = year.data$sales

Now, we have vectors of the years and the sales. From here, we can make a barplot.

barplot(sales, names.arg = year)

14

8000

6000

4000

2000

2014 2015

This gives us a reasonable start for a bar plot. However, we want these plots to look nice
and professional rather than like a 5th grade science project. So, we should add axis labels
and a title.

barplot(sales,
names.arg = year,
main = "House Sales in King County",
xlab = "year",

ylab = "houses sold")

15

House Sales in King County

6000 8000

houses sold

4000

2000
l

2014 2015

year

This looks better. There are other optional parameters for playing around with fonts,
but let’s leave this where it is right now. Also, you may have seen side-by-side bar plots
before. For example, for each year, we may have broken down the sales by the number of
bedrooms in the house. To make this bar plot, you have to use matrices. It’s a bit beyond
the scope of what we want to do now, so we’ll continue on.

5.2 Box Plots

The next type of plot we’ll look at is box plots. Box plots are one way of showing the
distribution of a random variable in one dimension. They're nice because you can easily
compare multiple distributions side-by-side. For example, suppose we want to look at the
distribution of house price by number of bedrooms in our kc.arranged data frame.

16

price.by.room = kc.arranged %>%
group_by(bedrooms) %>%
summarize(price.list = list(price))
price.list = price.by.room$price.list
bedrooms = price.by.room$bedrooms
boxplot (price.list,

names = bedrooms,

main = "House price by number of bedrooms",
xlab = "number of bedrooms",

ylab = "price")

House price by number of bedrooms

©
o
+
o)
Io%s) o
o
o
©
o
+_
[
©
o
o o
o
o)
o 6]
©
v O o
O $ — o
= o o)
o < Ogeo
o b
g8 ©° 7
1
© I
o) X
OI
9 8 e}
1
51 8 o
I3V 0 X
E ; —
' h P
: ! ! ! |
' I
] , - —
o I—I—II_'_II : | —_
o T T T —_—
+_
8 | | | | | | I I I I

number of bedrooms

This was a bit complicated, so perhaps we can look at some of the smaller pieces. First,

17

let’s look at the head of our summary.

head(price.by.room)

A tibble: 6 x 2

bedrooms price.list
<int> <list>
1 2 <dbl [573]>
2 3 <dbl [5,325]>
3 4 <dbl [5,581]>
#t 4 5 <dbl [1,376]>
5 6 <dbl [244]>
6 7 <dbl [35]>

Note that in the bedrooms column, we see the “jint;” header, which helpfully tells us that
the column consists of integer data. For the second column, we see “jlist;” instead. This
is another data type that we haven’t discussed. Essentially, a list is an ordered connection
of any type of variable. Here, we see that it consists of double (precision floating point
numbers), or rather, vectors of doubles of various lengths. We can look at an element if we
want

price.list[[8]]
[1] 450000 599999 700000 934000 1280000 1400000

This provides us with the six house prices for the houses that sold with 9 bedrooms (since
we start counting at 2 bedrooms, remember).

Long story short, how does the boxplot function work again? You give it a list of vectors,
and then it plots each vector in a boxplot. Simple enough, hopefully.

5.3 Histograms

Histograms are another way of showing the distribution of a one-dimensional variable. The
upside is that you get a better sense of the distribution of the variable than with a boxplot,
but the downside is that it is harder to compare multiple distributions. Additionally, there’s
the problem of bin sizes, which are arbitrary. In any case, let’s make a histogram of the
prices of houses with four bedrooms (and at least two bathrooms).

four.bedrooms.prices = price.list[[3]]

hist(four.bedrooms.prices,

main = "Prices of four bedroom houses",
xlab = "price in dollars",
ylab = "number of houses")

18

Prices of four bedroom houses

o
o _
L0
(qV]
o
o _|
o
(qV]

(7]

3

> 8

o 0

£ -

y—

o

f -

(]

QO

EC)

2 O

c o_
—
o
o_
Lo

I e |

o_

I I I I I
Oe+00 le+06 2e+06 3e+06 4e+06

price in dollars
Amazing, right?

5.4 Scatter Plots

Now, let’s make a scatter plot. Here, we’ll just consider the price of a four bedroom (with
at least two bathrooms) by square footage. We'll need to define a new data frame.

four.bedrooms = kc.df %>% filter(bedrooms == 4,
bathrooms >= 2) %>%
select(sqft_living, price)
plot (four.bedrooms$sqft_living,
four.bedrooms$price,

19

main = "Price of 4 bedroom house by square footage",
xlab = "square feet",
ylab = "price in dollars")

Price of 4 bedroom house by square footage

price in dollars
3e+06 4e+06
| |
o

2e+06
I

1e+06
|

0e+00
I

I I I I I I I I
1000 2000 3000 4000 5000 6000 7000 8000

square feet

There we go! Now we have a scatter plot. So, what exactly did we do here? Well, we
gave the plot function two vectors of numerical data of equal length, and the points were
plotted. We could easily come up with a simpler, more transparent example.

plot(1l : 5,
-1 % (1 : 5))

20

N o)
I o)
-
0
—
(9p]
P o
—
|
Y - o)
o o
I I I I I
1 2 3 4 5

15
This is hopefully simple enough.

5.5 Saving Plots

One last thing. I haven’t told you how to save plots yet, but it’s easy enough to do in
RStudio. Simply click the “Export” command in the plotting pane, and save the file as an
image or a pdf. Or, save it to your clipboard to paste into your printed assignment.

There are ways to save plots in R directly from the console. Also, using these more
advanced options, it’s possible to change the font sizes and margins of the plots. This is
probably too much for us right now though.

21

6 Practice

If you would like some practice with dplyr, then there’s a short set of practice ques-
tions (and solutions) at https://www.r-bloggers.com/lets-get-started-with-dplyr/.
If you would like some additional plotting work, then you can also look at my Stat 111
recitation 2 notes. The necessary data is also available on my webpage, http://kiefer.
wharton.upenn.edu/~jkhim/teaching.html.

22

