Stat 422/722: Recitation 2

Justin Khim

September 12th, 2017

1 Agenda

The R notes posted online by the instructor are fairly comprehensive. Here are the things
we’ll do today:

e make nice boxplots, both with the usual boxplot command and with ggplot;

e use the mutate function in dplyr, which I forgot to include in the previous set of notes;
and

e learn a few additional tricks on linear regression in R.

But, before we get to these, we should discuss lists.

2 Lists

We briefly mentioned lists in R, but we didn’t talk about them extensively. Lists are a very
common data type in many coding languages. In R, people tend to define them explicitly
less because vectors are preferable for storing numbers.

So, what’s the difference between vectors and lists? Each element of a vector must be
of the same data type, eg numeric, boolean, or string. We’ll usually use numeric vectors
(vectors of numbers), but we see some strings in categorical data and when creating names
for plots. Further, having one type of data is nice because if we know that we have a numeric
vector, then we know that functions like mean, sd, hist, and boxplot will work.

On the other hand, lists don’t have such a restriction. This means that we wouldn’t want
to try to take the mean or make a histogram out of data in a list, because not every element
in the list has to be a number. But, it might be nice in some cases to be able to store data of
multiple types. For example, suppose that we want to store the attributes of height, weight,
eye color, hair color, and favorite type of pizza for a person. We could use a list for this.

alice = list(65, 125, "blue", "blue", "pepperoni')
bob 1list (70, 170, "brown", "black", "Hawaiian")
eve list(64, 115, "brown", "brown", "pesto")

We can evaluate the ith element of a list using two brackets (on each side). For example,
we can evaluate the first element of the lists.

alice[[1]]
[1] 65
bob[[1]]
[1] 70
eve[[1]]
[1] 64

Of course, there’s a special type of data in R for information like this: the data frame.
Or really, the data frame is just a special type of list. Let’s look at a subset of the house
price data we had last time.

library(dplyr)

##

Attaching package: ’dplyr’

The following objects are masked from ’package:stats’:
##

filter, lag

The following objects are masked from ’package:base’:
##

intersect, setdiff, setequal, union

kc.df = read.csv("kc_house_data.csv")
kc.df .smaller = kc.df %>%
select (id,
price,
bedrooms,
bathrooms)

Now, if this is a list, we should be able to access the second element using the brackets.

head(kc.df.smaller[[2]])

[1] 221900 538000 180000 604000 510000 1230000

Recall that we only use the head function to limit the output to a reasonable number
of entries (six). The output here were the first six house prices. You can play around with

2

other indices, but the point here is that a data frame is a list, and the ith element of that list
is the ith column. This is worth taking a minute to think about: we can make lists where
an element of the list is a vector.

example.list = list(c(1), c(2, 2), c(3, 3), "Hello, world!")
example.list

[[1]]
[1] 1
#it

[[2]]
[1] 2 2
##

[[3]]
[1] 3 3
#t

[[4]]
[1] "Hello, world!"

Now, you may be wondering why we need the double brackets. What if we just use single
brackets?

example.list[3]

[[1]]
[1] 3 3

What this does is gives you a list that is one element long, and that list contains the ith
element. Why might we want this to be the result? Well, we might want a subset of the list.

example.list[3 : 4]

[[1]]

[1] 3 3

#i

[[2]]

[1] "Hello, world!"

It’s clear here that we need the result to be a list because the elements of the list are of
different types. The difference between single and double brackets is something to keep in
mind, as it’s an easy thing to mess up.

One final list thing (that’s very specific to R) is naming. We can name the indices of our
list to make them easier to access or interpret.

attributes = c("height", "weight", "eyes", "hair", "pizza")
names(alice) = attributes
alice

$height

[1] 65

##

$weight

[1] 125

##

$eyes

[1] "blue"
##

$hair

[1] "blue"
#Hi#

$pizza

[1] "pepperoni"

And of course, we can access them with the usual bracket or dollar commands.
alice[["pizza"]]
[1] "pepperoni"
alice$eyes

[1] "blue"

3 Boxplots Revisited

Now that we’ve done our meditations for the day on lists, we can revisit box plots. Let’s
look at a simple boxplot.

x = rnorm(100, mean = 0, sd = 1) # wvector of 100 standard normal rvs
y = rnorm(100, mean = 10, sd = 15) # wector of 100 mormal rvs
boxplot (x)

So, this is how we make a boxplot to look at the distribution of one variable, the x in
this case. Now, we can do it with two sets of data.

boxplot(x, y)

30 40
I

20

10

-10

This gives two boxplots side-by-side. The first one corresponds to x, and the second, to
y. We see that this makes sense, since the second boxplot has higher mean and standard
deviation.

We can make this boxplot in another way using a list.

1 = list(x, y)
boxplot (1)

30 40
I

20

10

-10

Here, 1 is a list containing x and y as elements. The boxplot function takes the list and
plots each vector in its own boxplot.

So, now let’s revisit the more complicated example from last time (it’s slightly different
here because we don’t do all the other stuff) and break it down. For those of you who didn’t
like this example last time, I'll offer an alternative later.

price.by.room = kc.df %>%
group_by (bedrooms) %>%
summarize(price.list = list(price))
price.list = price.by.room$price.list
bedrooms price.by.room$bedrooms
boxplot(price.list,

names = bedrooms,

main = "House price by number of bedrooms",
xlab = "number of bedrooms",
ylab = "price")

House price by number of bedrooms

©
o
+
o)
(es] o)
o)
¢)
©
o
+ p—
3
o)
o o)
o)
o)
)
©
(o) o ©
o $ —]
L2 o
<
o e

2e+06
|
(oYo)
o
oXe¢o)
]—-_ummmo Qoo O O

&~ F_E——-—W:OO@OO @)
- <|(m)(010)(0) @ O a O
O OO O O
]

—_
1
1
8 —
—
|I| [1 T ! —_
1

— p— | 1 —_
- . . —

0e+00
I

number of bedrooms

This shows a nice plot with boxplots for the house price, broken down by the number
of bedrooms. We should be able to deduce that price.list is the list that contains the
vectors of prices. Here’s the first element (the prices for the 0-bedrooms)

price.list[[1]]

[1] 1100000 380000 288000 228000 1300000 339950 240000 355000
[9] 235000 320000 139950 265000 142000

Now that’s an expensive studio. So, there’s no real mystery in the boxplot function.
The only other things to note are that the optional argument names takes a vector of strings
to use as the names of the individual boxplots.

So, we need to think about our dplyr functions. Remember that group_by groups the
data frame into a tibble object (not that I know where that name comes from). In any
case, the summarize function computes a function on each of the subgroups. Here, we asked
for a list of the prices. For whatever reason, this creates a column price.list that is a
list consisting of elements that are vectors of numerical data. Whew. If this doesn’t make
enough sense, we can try something that might make more or less sense.

We're going to try a new method to make these side-by-side boxplots, and to do this,
we’ll use a new package. So install ggplot2.

install.packages("ggplot2")

And then load it.
library(ggplot2)

Note that ggplot2 is a part of the Tidyverse, which also includes dplyr. So, if you
installed the Tidyverse, you’ll already have ggplot2 and will just need to load it. Anyways,
we can make a plot by using the function ggplot and telling it what data frame it needs.

To make a boxplot, we use the geom_boxplot function.

ggplot(data = kc.df) +
geom_boxplot(aes(x = factor(bedrooms), y = price))

8e+06 -

6e+06 -
°
L °
°
° °
°
B 4e+06- °
= ° o °
o 1 ‘ ' °
° °
¢ i ° § H °
i | |
® []
°
i . -
| .
2e+06 - e s .
. {
L ° ‘ I
. | IJ_I
! | —
1 | { [] : : | | | I
— = 1 T |
0e+00 -
0 1 2 3 4 5 6 7 8 9 10 11 33

factor(bedrooms)

Note that here, the aes defines the aesthetic, which takes passes the data to geom_boxplot.
Here, we're telling the boxplot to plot the bedrooms along the x-axis, treating each number
as a categorical variable using the factor command. Next, the y-axis gives the prices, so
we need to tell the boxplot that price is the function the data that we’re interested in.

Now, let’s clean up the boxplot.

ggplot(data = kc.df) +
geom_boxplot(aes(x = factor(bedrooms), y = price)) +
xlab("bedrooms") +
ylab("house sale price")

10

8e+06 -

6e+06 -
[]
® o
[]
_8 e o
S °
2 4e+06- .
(7] [] []
g e & g o
e e
2 'io‘:o
i | |
° []
[]
i . -
] s
2e+06 - e s °
f §
e o ‘ I
. | IJ_I
T [] [—
1 | 1 | |II| | | | I
— 1 | |
0e+00 -
0 1 2 3 4 5 6 7 8 9 10 11 33

bedrooms

Here, we've simply modified the x-axis and y-axis labels using x1ab and ylab. They each
take a string and just make it the label. Simple-we didn’t even need dplyr. Since this is the
only instance (at the moment) where we need to plot something based on factors, we’ll not
provide the ways to make other plots using ggplot. However, they are generally considered
to be nicer looking plots, and you may want to learn more about ggplot if you intend to
display data in your work.

4 Using mutate

I mentioned mutate last time but neglected to tell you what it does. You can use mutate
to add a new column to your data frame, or, more precisely, it outputs a data frame that

11

contains an additonal column. You can use this in case you have more sophisticated analyses,
or if you need to use the 1m function multiple times.

For a quick example, we can make an additional predictor that is the product of the
square footage and the waterfront indicators.

kc.df .modified = kc.df %>/ mutate(sqft_water_int = sqft_living * waterfront)
kc.df .modified$sqft_water_int[1 : 100]

[1] 0 0 0 0 0 0 0 0 0 0 0 0 0
[15] 0 0 0 0 0 0 0 0 0 0 0 0 0
[29] 0 0 0 0 0 0 0 0 0 0 0 0 0
[43] 0 0 0 0 0 0 0 2753 0 0 0 0 0
[57] 0 0 0 0 0 0 0 0 0 0 0 0 0
[71] 0 0 0 0 0 0 0 0 0 0 0 0 0
[85] 0 0 0 0 0 0 0 0 0 0 0 0 0
[99] 0 0

So, we can see that one of the first 100 is nonzero. On the left side of the equals sign in
mutate, you put the column name that you want to use for the new column. On the right
hand side, you put in the equation for the new variable.

kc.df .modified?2 = kc.df %>% mutate(bb.diff = bedrooms - bathrooms)
kc.df .modified2$bb.diff[1 : 100]

#i# (1] 2.00 0.75 1.00 1.00 1.00 -0.50 0.75 1.50 2.00 0.50 0.50
[12] 1.00 2.00 1.25 3.00 1.00 1.00 3.00 1.00 2.00 2.25 0.25
[23] 2.50 0.50 0.76 1.00 1.25 2.00 1.25 1.50 0.50 0.50 2.25
[34] 2.00 1.26 0.50 3.00 2.00 3.00 1.50 1.50 1.75 2.25 2.00
[45] 2.00 0.50 2.00 1.50 1.25 0.50 2.00 2.50 1.25 0.25 2.75
[66] 1.50 1.50 0.50 1.75 1.00 0.75 1.26 1.25 1.25 0.75 0.25
[67] 1.50 1.50 2.00 2.75 1.75 1.00 2.00 1.50 1.25 0.00 2.25
[78] 2.00 2.00 1.50 0.50 1.50 1.00 1.50 2.00 1.50 2.75 -0.25
[89] -0.25 0.256 1.50 2.25 2.00 1.50 1.50 1.50 1.25 2.50 1.25
[100] 0.50

Of course, don’t put this last new column in a linear model with either the bedrooms or
the bathrooms, since you’ll just get the same model as including the bedrooms and bathrooms
individually.

5 Regression Tips

The posted regression notes essentially tell you everything you need to know, but we’ll point
out a couple more features. First, let’s fit a linear model.

12

O O O O O O O

kc.lm = lm(price ~ sqft_living + bedrooms, data = kc.df)
kc.1m

##

Call:

1lm(formula = price ~ sqft_living + bedrooms, data = kc.df)
##

Coefficients:

(Intercept) sqft_living bedrooms

79282.0 314.2 -57112.9

The output here looks a bit weird. But, today’s theme is lists, so we can guess this is a
list as well.

names (kc.1lm)

[1] "coefficients" '"residuals" "effects" "rank"
[5] "fitted.values" "assign" "qr" "df .residual"
[9] "xlevels" "call" "terms" "model"

kc.1lm[["coefficients"]]

(Intercept) sqft_living bedrooms
79281.9840 314.1588 -57112.8962

The index for the coefficients happens to contain a vector. Cool.

The other thing on linear models that I want to point out has to do with prediction on
new data. The notes give an example of how to predict new price information based on a
new data frame that is read in from a file, but you don’t need to use a file to do this. We
can just define a new data frame ourselves.

fake.sqft = c(4000, 2000)

fake.bedroom = c(4, 3)

fake.data = data.frame(sqft_living = fake.sqft, bedrooms = fake.bedroom)
predict (kc.1lm, newdata = fake.data)

#i#t 1 2
1107465.4 536260.8

Just note that for this to work, the new data needs to have the same column names (and
types) as the ones used in the linear model of the original data. Note that it doesn’t mean
we need all the columns, but we do need the relevant ones appropriately named. Here’s
another example.

13

fake.data2 = data.frame(fake.sqft, fake.bedroom)
predict(kc.1lm, newdata = fake.data2)

Error in eval(predvars, data, env): object ’sqft_living’ not found

The lesson here is that the names of elements in lists really matter in R.

14

